Do Earthworms Truly Always Assist Farmers or is There Another Fact ?

Authors

  • Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh
  • Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh

DOI:

https://doi.org/10.26515/rzsi/v123/i2S/2023/172547

Keywords:

Exotic earthworms, disturbance, native earthworms, colonization of species, biological invasion, competition.

Abstract

Among all the soil creatures, earthworms are regarded as the most crucial. They are found in the areas where the soil contains enough water and temperature. They also exhibit a variety of environmental adaptations to the various environments. Earthworms may live in local microsites, even in unsuitable areas, when the conditions are favorable (such as urban gardens, desert oasis, etc.), especially if well-adapted species have been introduced. Despite the fact that earthworms have many positive effects on the soil ecology, certain of their activities are deemed undesirable. The destructive behaviors of earthworms include removing and burying surface residues that would otherwise protect soil surfaces from erosion, producing fresh casts that promote erosion and surface sealing, increasing soil compaction on the surface, leaving castings on lawns where they are an annoyance, dispersing weed seeds in gardens and agricultural fields, transmitting plant or animal pathogens, and riddling irrigation canals that reduce their ability to function. Although being little understood, there is a surge in exotic earthworm invasions as a result of worldwide commerce in agriculture, waste management, and bioremediation. Exotic earthworm invasions are spreading globally and having a significant impact on plant populations and soil processes. It has been documented that at least 100 different species of earthworms are found outside of their natural habitats. Non-native earthworms can potentially colonize new places despite disturbance and interference. The present study discusses on the impact of invasive earthworms on the agroecosystem and analyzes the importance of earthworms in all soil ecosystems.

Downloads

Download data is not yet available.

Downloads

Published

2023-07-01

How to Cite

Tiwari, P., & Yadav, S. (2023). Do Earthworms Truly Always Assist Farmers or is There Another Fact ?. Records of the Zoological Survey of India, 123(2S), 565–572. https://doi.org/10.26515/rzsi/v123/i2S/2023/172547

References

Anuja, R., Narayanan, S. P., Sathrumithra, S., Thomas, A. P., & Julka, J. M. 2022. Diversity of Earthworms in Different Land Use Systems of Kottayam District, Kerala, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1-18.

Barbosa, P., Krischik, V. A., & Jones, C. G., 1991. Microbial mediation of plant-herbivore interactions. 1-639. (Published by Wiley-Interscience, John Wiley & Sons, Inc., New York).

Bohlen, P. J., Groffman, P. M., Fahey, T. J., Fisk, M. C., Suárez, E., Pelletier, D. M., & Fahey, R. T., 2004a. Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems, 7, 1-12.

Bohlen, P. J., Scheu, S., Hale, C. M., McLean, M. A., Migge, S., Groffman, P. M., & Parkinson, D. 2004b. Non‐native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment, 2(8), 427-435.

Brown, G. G. 1995. How do earthworms affect microfloral and faunal community diversity? Plant and Soil, 170, 209-231.

Chapuis-Lardy, L., Brauman, A., Bernard, L., Pablo, A. L., Toucet, J., Mano, M. J., & Blanchart, E. 2010. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Applied Soil Ecology, 45(3), 201-208.

Csuzdi, C. 2012. Earthworm species, a searchable database. Opuscula Zoologica (Budapest), 43(1), 97-99.

Darwin, C. R. 1881. The formation of vegetable mould, through the action of worms, with observations on their habitats. 1-326. (Published by John Murray, London).

Dicke, M. 1998. Induced responses to herbivory by R. Karban and IT Baldwin. Trends in Ecology & Evolution, 13(2), 83. Edwards, C.A. 1998. Use of Earthworms in the breakdown and management of organic wastes. 327-354 (Published by CRC press, Boca Raton).

Edwards, C. A., & Bohlen, P. J. 1996. Biology and ecology of earthworms Vol.3. 1-438. (Published by Springer Science & Business Media, Chapman & Hall, London).

Ehrenfeld, J. G. 1997. Invasion of deciduous forest preserves in the New York metropolitan region by Japanese barberry (Berberis thunbergii DC.). Journal of the Torrey Botanical Society, 210-215.

Ehrenfeld, J. G., Kourtev, P., & Huang, W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological Applications, 11(5), 1287-1300.

Eisenhauer, N., Partsch, S., Parkinson, D., & Scheu, S. 2007. Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biology and Biochemistry, 39(5), 1099-1110.

Ferlian, O., Eisenhauer, N., Aguirrebengoa, M., Camara, M., Ramirez‐Rojas, I., Santos, F., & Thakur, M. P. 2018. Invasive earthworms erode soil biodiversity: A meta‐analysis. Journal of Animal Ecology, 87(1), 162-172.

Frelich, L. E., Blossey, B., Cameron, E. K., Dávalos, A., Eisenhauer, N., Fahey, T., & Reich, P. B. 2019. Side-swiped: ecological cascades emanating from earthworm invasion. Frontiers in Ecology and the Environment, 17(9), 502-510.

Frelich, L. E., Hale, C. M., Reich, P. B., Holdsworth, A. R., Scheu, S., Heneghan, L., & Bohlen, P. J. 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8, 1235-1245.

Gao, M., Taylor, M. K., & Callaham Jr, M. A. 2017. Trophic dynamics in a simple experimental ecosystem: Interactions among centipedes, Collembola and introduced earthworms. Soil Biology and Biochemistry, 115, 66-72.

Grdisa, M., Gisic, K., & Grdisa, M. D. 2013. Earthworms-role in soil fertility to the use in medicine and as a food. Invertebrate Survival Journal, 10(1), 38-45.

Hammerschmidt, P. K. 1996. The Kirton Adaption Innovation Inventory Find Group Problem Solving Success Rates. The Journal of Creative Behavior, 30(1), 61-74.

Harborne, J. B. 2014. Introduction to ecological biochemistry. 1-336 (Published by Academic press; London, New York).

Hasan Nurul M., Ahmed Shakoor, Deuti Kaushik and Marimuthu Nithyanadam, 2023. Earthworm (Annelida:Clitellata) fauna of Chhattisgarh, India. Journal of Threatened Taxa, 15(4), 23091–23100.

Hendrix, P.F. 1995. Earthworm Ecology and Biogeography in North America.1-256. (Published by Lawis, Boca Raton, Florida).

Hendrix, P. F., & Bohlen, P. J. 2002. Exotic earthworm invasions in North America: ecological and policy implications: expanding global commerce may be increasing the likelihood of exotic earthworm invasions, which could have negative implications for soil processes, other animal and plant species, and importation of certain pathogens. Bioscience, 52(9), 801-811.

James, S. W., & Hendrix, P. F. 2004. Invasion of exotic earthworms into North America and other regions. Earthworm Ecology, 441, 75-88.

Julka, J. M., Paliwal, R., & Kathireswari, P. 2009. Biodiversity of Indian earthworms-an overview. In Proceedings of Indo-US Workshop on Vermitechnology in Human Welfare. Rohini Achagam, Coimbatore, 36-56.

Krischik, V. A. 1991. Specific or generalized plant defense: reciprocal interactions between herbivores and pathogens. Microbial Mediation of Plant Herbivore Interactions, 309-340.

Lalthanzara, H., & Zodinpuii, B. 2021. Earthworm population dynamics in traditional slash and burn cultivation in Mizoram, Northeast India. Journal of Environmental Biology, 42(1), 128-134.

Lavelle, P., Brussaard, L., Hendrix, P. eds. 1999. Earthworm management in tropical agroecosystems. 1-300. (Published by CABI, London).

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P. O. W. H., & Dhillion, S. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159-193.

Lavelle, P., Lattaud, C., Trigo, D., & Barois, I. 1995. Mutualism and biodiversity in soils. Plant and Soil, 170, 23-33.

Lavelle, P., Pashanasi, B., Charpentier, F., Gilot, C., Rossi, J. P., Derouard, L., & Bernier, N. 1998. Large-scale effects of earthworms on soil organic matter and nutrient dynamics. Earthworm Ecology, 103-122.

Laverack, M. S. 1961. Tactile and chemical perception in earthworms’ II responses to acid pH solutions. Comparative Biochemistry and Physiology, 2, 22-34.

Lee, K. E. 1985. Earthworms: their ecology and relationships with soils and land use. 1-411. (Published by Academic Press, USA). Li, J., Xu, C., Griffin, K. L., & Schuster, W. S. 2008. Dendrochonological potential of Japanese barberry (Berberis thunbergii): a case study in the Black rock forest, New York. Tree-Ring Research, 64(2), 115-124.

Lone, A. R., Thakur, S. S., Tiwari, N., Sokefun, O. B., & Yadav, S. 2021. DNA barcoding and genetic variability of earthworms (Clitellata: Oligochaeta) with new records from Mizoram, India. Organisms Diversity & Evolution, 21, 737-751.

Lone, A. R., Thakur, S. S., Tiwari, P., James, S. W., & Yadav, S. 2022. Phylogenetic Relationships in earthworm Megascolex Species (Oligochaeta: Megascolecidae) with Addition of Two New Species. Diversity, 14(11), 1006.

Loss, S. R., & Blair, R. B. 2011. Reduced density and nest survival of ground‐nesting songbirds relative to earthworm invasions in northern hardwood forests. Conservation Biology, 25(5), 983-992.

McLean, M. A., Migge-Kleian, S., & Parkinson, D. 2006. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions, 8, 1257-1273.

Mete Misirlioglu, Reynolds John Warren, Stojanovic Mirjana, Trakic Tanja, Sekulic Jovana, James W. Samuel, Csuzdi Csaba, Decaens Thibaud,Lapied Emmanuel, Phillips Helen R.P., Cameron & Brown G. George, 2023. Earthworms (Clitellata, Megadrili) of the world: an updated checklist of valid species and families, with notes on their distribution. Zootaxa, 5255 (1), 417–438

Migge-Kleian, S., McLean, M. A., Maerz, J. C., & Heneghan, L. 2006. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biological Invasions, 8, 1275-1285.

Narayanan, S.P., Paliwal. R., Kumari, S., Ahmed. S., Thomas, A.P., & Julka, J. M. 2020. Annelida: Oligochaeta. In: Faunal diversity of biogeographic zones of India: Western Ghats. (Published by Zoological Survey of India, Kolkata), 87–102.

Narayanan, S. P., Somanadhan, S., Anuja, R., Guna, C., Ambattu, P. T., & Julka, J. M. 2019. First record of the exotic earthworm Metaphire bahli (Gates, 1945) (Oligochaeta: Megascolecidae) from India. Opuscula Zoologica (Budapest), 50(1), 99-103.

Parmelee, R. W. 1998. Earthworms and nutrient cycling processes: integrating across the ecological hierarchy. Earthworm Ecology, 123-141.

Ransom, T. S. 2012. Comparison of direct, indirect, and ecosystem engineering effects of an earthworm on the red backed salamander. Ecology, 93(10), 2198-2207.

Reynolds, J. W., & Wetzel, M. J. 2012. Terrestrial Oligochaeta (Annelida: Clitellata) in North America, including Mexico, Puerto Rico, Hawaii, and Bermuda. III. Megadrilogica, 15(8), 191-211.

Sala, O. E., Stuart Chapin, F. I. I. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., & Wall, D. H. 2000. Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770-1774.

Satchell, J. 2012. Earthworm ecology: from Darwin to vermiculture. 1-496. (Published by Springer Dordrecht) Schönbeck, F., & Schlösser, E. 1976. Preformed substances as potential protectants. Physiological Plant Pathology, 653-678.

Simberloff, D., & Von Holle, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions, 1, 21-32.

Sugalski, M. T., & Claussen, D. L. 1997. Preference for soil moisture, soil pH, and light intensity by the salamander, Plethodon cinereus. Journal of Herpetology, 245-250.

Tao, J., Griffiths, B., Zhang, S., Chen, X., Liu, M., Hu, F., & Li, H. 2009. Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Applied Soil Ecology, 42(3), 221-226.

Thakur, M. P., Künne, T., Unsicker, S. B., Biere, A., Ferlian, O., Pruschitzki, U., & Eisenhauer, N. 2021. Invasive earthworms reduce chemical defense and increase herbivory and pathogen infection in native trees. Journal of Ecology, 109(2), 763-775.

Tiwari, N., Lone, A. R., Thakur, S. S., & Yadav, S. 2021. Interrogation of earthworm (Clitellata: Haplotaxida) taxonomy and the DNA sequence database. Journal of Asia-Pacific Biodiversity, 14(1), 40-52.

Walton, B. M., Tsatiris, D., & Rivera-Sostre, M. 2006. Salamanders in forest-floor food webs: Invertebrate species composition influences top-down effects. Pedobiologia, 50(4), 313-321.

Wyman, R. L. 1998. Experimental assessment of salamanders as predators of detrital food webs: effects on invertebrates, decomposition and the carbon cycle. Biodiversity & Conservation, 7, 641-650.

Zhang, W., Hendrix, P. F., Snyder, B. A., Molina, M., Li, J., Rao, X., & Fu, S. 2010. Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology, 91(7), 2070-2079.

Zodinpuii, B., & Lalthanzara, H. 2019. Earthworm diversity, density and distribution under shifting (Jhum) cultivation in a tropical hilly terrain of Mizoram, North East India. Journal of Environmental Biology, 40(5), 995-1002.