

Distribution and diversity of intertidal marine faunal species along with Maharashtra and Goa coast, India

S. Balakrishnan^{1*} and G. Sivaleela²

¹Marine Aquarium and Regional Centre, Zoological Survey of India, Digha – 721428, West Bengal, India; Email: marugalbalu82@gmail.com ²Marine Biological Regional Centre, Zoological Survey of India, 130, Santhome High Road, Chennai – 600028, Tamil Nadu, India

Abstract

The distribution and diversity of intertidal marine faunal specimens were collected from sandy, muddy, mangrove and rocky habitats along the Maharashtra and Goa coasts, India, from June 2016 and December 2018. A total of 63 species belonging to 58 genera, 39 families, 25 orders, and 6 phyla were identified. A maximum of 39 species under the phylum Mollusca, followed by 15 species of arthropods whereas the minimum of only one species was recorded under the phyla Echinodermata and Brachiopoda. Statistical tool PAST (Ver. 1.42) was employed to calculate species diversity (*H*), richness (*D*) and evenness (*J*). The diversity of macrofaunal groups is highly disturbed due to anthropogenic activities, but they still support rich intertidal biodiversity, which needs immediate attention for protection and conservation.

Keywords: Coastal Environment, Diversity, Goa, Macrofaunal Assemblage, Maharashtra

Introduction

The marine ecosystem, mainly the intertidal zone, is one of the most dynamic zones because it is the interface between the sea and terrestrial environment. The two most important physical factors that influence the life and activities of organisms in the intertidal zone are the existence of waves and the duration of exposure to sunlight. The Indian Coast is constantly threatened by effluent discharges from cities and industrial downs. This gives rise to immense environmental problems leading to the deterioration of water quality and the reduction of flora and fauna (Datta, et al., 2010; Gohil and Kundu, 2012; Pavithran and Nandan, 2014). Because of their accessibility, intertidal habitats are highly explored in comparison with other habitats (Vaghela, et al., 2010). This coastline is known for its rich marine life, especially the intertidal biota in its extended intertidal and subtidal areas (Shukla and Misra, 1977). The rocky intertidal zone is among the most physically harsh environments on earth. Marine invertebrates and algae living in this habitat are alternately pounded by waves and exposed to thermal extremes during low tide periods (Crowe et al., 2000; Denny and Wethey, 2001; Lakwal et al., 2018) Denny and Wethey, 2001; Lakwal, et al., 2018). Wave, wind action, grain size and tide amplitude are the most significant factors in their physical categorization (Nybakken, 1993). Maharashtra's coast is characterized by pockets of beaches flanked by rocky cliffs of Deccan basalt, estuaries and patches of mangroves. Maharashtra state has about 720 km of indented coastline, which is marked by the presence of major estuaries and narrow creeks. It comprises the coastal districts of Thane, Raigad, Greater Bombay, Palghar, Ratnagiri and Sindhudurg. The shoreline is generally straight. The purpose of this study is to compile a list of intertidal marine faunal species found along the Maharashtra and Goa coasts.

Materials and Methods

Study Sites

This study was conducted along with Maharashtra and Goa, representing the coastal environments of the west coast of India and investigated the distribution and

^{*} Author for correspondence

S. No.	Charles at the	District	State	Coor	dinates	Habitats
5. NO.	Study sites	District	State	Latitude (N)	Longitude (E)	Haditats
01.	Aare Ware Beach	Ratnagiri	Maharashtra	17°131.66	073°275.67	Sandy
02.	Bhatye Beach	Ratnagiri	Maharashtra	16°580.80	073°173.02	Sandy
03.	Chivala Beach	Sindhudurg	Maharashtra	16°034.69	073°273.98	Sandy
04.	Devbaag Beach	Sindhudurg	Maharashtra	16°000.64	073°292.07	Sandy
05.	Devgad Beach	Ratnagiri	Maharashtra	16°223.18	073°221.39	Sandy with mudflats and mangroves
06.	Ganpatipule Beach	Ratnagiri	Maharashtra	17°064.65	073°163.88	Sandy and mangroves
07.	Kalbadevi Beach	Ratnagiri	Maharashtra	17°032.07	073°171.56	Rocky shore
08.	Kunkeshwar Beach	Ratnagiri	Maharashtra	16°356.05	073°393.34	Sandy
09.	Malvan Beach	Sindhudurg	Maharashtra	16°031.80	073°275.06	Sandy
10.	Rock Garden Beach	Sindhudurg	Maharashtra	16°033.88	073°272.37	Rocky shore
11.	Tarkarli Beach	Sindhudurg	Maharashtra	16°041.43	073°284.21	Sandy and rocky
12.	Vetye Beach	Ratnagiri	Maharashtra	16°411.82	073°194.47	Sandy
13.	Anjuna Beach	North Goa	Goa	15°164.11	073°544.63	Sandy and rocky
14.	Arambol Beach	North Goa	Goa	15°411.39	073°421.44	Sandy
15.	Baga Beach	North Goa	Goa	15°334.24	073°445.37	Sandy
16.	Bogmalo Beach	Vasco da Gama	Goa	15°221.52	073°495.55	Sandy
17.	Colva Beach	South Goa	Goa	15°164.11	073°544.63	Sandy
18.	Mandarin Beach	Goa	Goa	15°621.52	073°426.01	Sandy
19.	Mandrem Beach	North Goa	Goa	15°393.99	073°424.46	Sandy
20.	Morgim Beach	North Goa	Goa	15°373.10	073°434.70	Nesting and hatching habitat of the Olive ridley sea turtle
21.	Vagator Beach	Goa	Goa	15°360.31	073°440.02	Sandy and rocky

Table 1. Collections location of intertidal fauna along Maharashtra and Goa

diversity of marine faunal species (Table 1 and Figure 1). Sample Collection

Samples were collected using the handpicking method during low tide. After collection, they were preserved in 10% neutralized formalin. Representative samples were taken in a Petri dish and carefully examined under a binocular microscope with strong incident illumination. The animal groups were sorted, counted and preserved for specific determination. The collected marine faunal communities were identified by adopting standard methods as described by Mollusca [Menon, *et al.* (1951); Apte (1988); Subba Rao (1991); Dance (2002)], Amphipoda [Barnard (1972); Myers (1985)], Fish [Fish and Fish (2011)], Crustaceans [Trilles (1979); Pillai (1985); Aneesh (2014) and Aneesh, *et al.* (2016)].

Estimation of Diversity and Distribution

Different biodiversity statistical software tools were used to determine the diversity indices, richness, and evenness using PAST (Ver. 1.42). The species diversity index was calculated using the following formula (Shannon and Wiener, 1949): $H' = -\sum pi \ln p_i$, where p_i is the proportion of individuals of each species belonging to the ith species of the total number of individuals. Species richness (*D'*) was calculated using the formula given by (Simpson, 1949): *D'* = 1 – C; $C = \sum pi^2$; pi = ni/N. Evenness or equitability (*S'*)

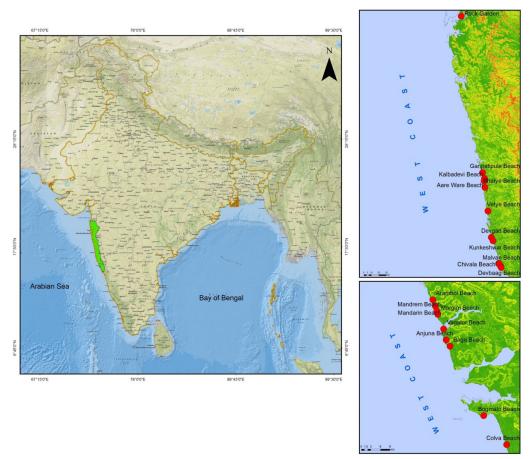


Figure 1. Map showing sampling locations along the Maharashtra and Goa.

was calculated using the (Pielou, 1966) formula: J' = H'/Jns or H'/log_2S .

Results

A total of 457 intertidal marine faunal specimens belonging to 63 species, 58 genera, 39 families, 25 orders, and six phyla were collected from 22 intertidal coastal environments. Diversity indices, richness, and evenness were calculated. Table 2 contains a list of recorded taxa and their respective intertidal coastal marine faunal species, as well as their habitats. In the present study, the diversity index (H') varied from 1.8749 to 0.3437. The minimum species diversity (0.3437) was recorded on the Baga Beach and the maximum level (1.8749) was observed on the Malvan (Figure 2). The species richness index (D') varied from 0.000 to 2.345. The minimum species richness (0.000) was observed at Arambol Beach, and the maximum (2.345) was noted at Vetye Beach (Figure 3). The species evenness index (J') varied from 0.000 to 2.018. The minimum species evenness (0.000) was observed on Arambol Beach, and the maximum (2.018) was recorded on Vetye Beach (Figure 4). The dominant species in the intertidal marine habitat were Arthropoda (18%), Brachiopoda (0%), Chordata (1%), Cnidaria (10%), Echinodermata (1%), and Mollusca (70%). The maximum number of species collected belongs to Arthropoda (18%), followed by Mollusca (70%) (Figure 5). The plot revealed that the grouping recognized in the cluster was evident. The stress value, which overlies the

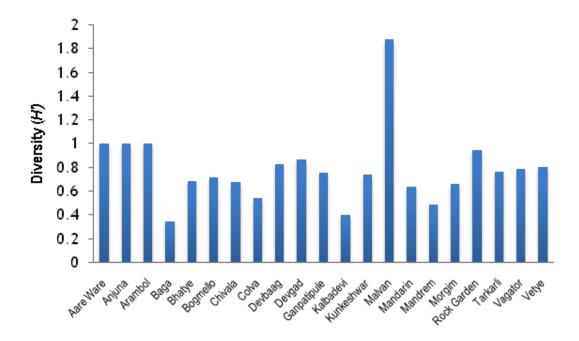
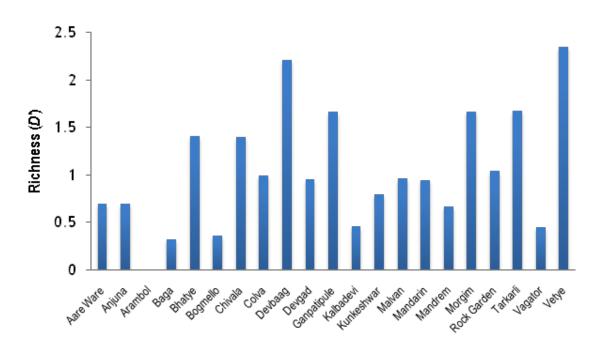
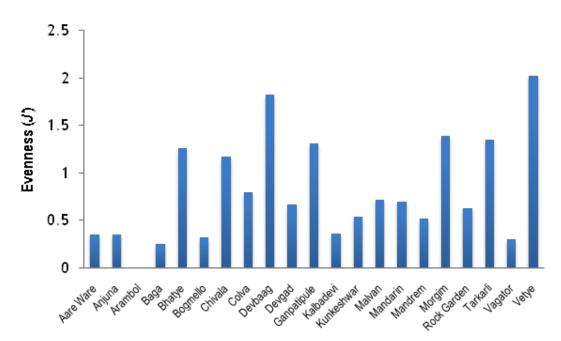
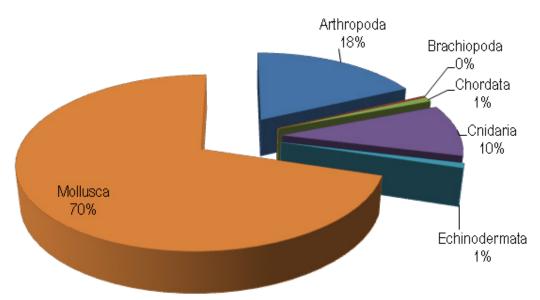

S. No.	Species Phylum ARTHROPODA	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	Tota
	Class MALACOSTRACA Latreille, 1802																						
	Order ISOPODA Latreille, 1817																						
	Family CYMOTHOIDAE Wägele, 1989				*																		
01.	Anilocra leptosome Bleeker, 1857																						01
02.	Catoessa boscii (Bleeker, 1857)				*											*							42
03.	Norileca indica (H. Milne Edwards 1840)														*								08
	Order DECAPODA Latreille, 1802																						
	Family OCYPODIDAE Rafinesque, 1815																						
04.	Austruca lactea (De Haan, 1835)																		*				01
	Family PORTUNIDAE Rafinesque, 1815																						
05.	Goniosupradens erythrodactylus (Lamarck, 1818)																					*	01
	Family OZIIDAE Dana, 1851																						
06.	Epixanthus frontalis (H. Milne Edwards, 1834)												*										01
07.	Ozius tuberculosus H. Milne Edwards, 1834	<u> </u>																	*				01
	Family GRAPSIDAE Macleay, 1838																						
08.	Geograpsus stormi de Man, 1895		*																				01
09.	Grapsus albolineatus Latreille in Milbert, 1812														*				*				03
	Family MATUTIDAE De Haan, 1835																						
10.	Matuta victor (Fabricius, 1781)										*									*			01
	Family VARUNIDAE H. Milne-Edwards, 1853																						
11.	Metaplax longipes Stimpson, 1858											*											01
	Family PORTUNIDAE Rafinesque, 1815																						
12.	Portunus sanguinolentus (Herbst, 1783)								*														01
13.	Thalamita prymna (Herbst, 1803)		*																				01
	Family LEUCOSIIDAE Samouelle, 1819																						
14.	Seulocia rhomboidalis (De Haan, 1841)									*		*						*		*	*		14
	Class THECOSTRACA Gruvel, 1905																						
	Order SCALPELLOMORPHA Buckeridge & Newman,																						
	2006																						
15.	Family LEPADIDAE Darwin, 1852						*																05
	Lepas (Anatifa) anatifera Linnaeus, 1758																						
	Phylum BRACHIOPODA Duméril, 1805																		*				
	Class LINGULATA Gorjansky & Popov, 1985																						
	Order LINGULIDA Waagen, 1885																						
	Family LINGULIDAE Menke, 1828																						
16.	Lingula anatina Lamarck, 1801																						01
10.	Phylum CHORDATA																						
	Class ACTINOPTERYGII																						
	Order PLEURONECTIFORMES																						
	Family PARALICHTHYIDAE Regan, 1910								*														
17.	Pseudorhombus triocellatus (Bloch & Schneider 1801)								*														01
	Family Soleidae Bonaparte, 1833								*														
18.	Solea ovata Richardson, 1846								*														01
	Order TETRAODONTIFORMES Berg, 1940																						
	Family TRIACANTHIDAE Bleeker, 1859																						
19.	Triacanthus biaculeatus (Bloch, 1786)	<u> </u>																		*			02
	Class REPTILIA Laurenti, 1768																						
	Order TESTUDINA Klein, 1760																						
	Family CHELONIDAE Oppel, 1811																						
20.	Chelonia mydas (Linnaeus, 1758)										*												0
	Phylum CNIDARIA																						
	Class HYDROZOA Owen, 1843																						
	Order LEPTOTHECATA Cornelius, 1992																						
	Family AEQUOREIDAE Eschscholtz, 1829																						
21.	Aequorea forskalea Péron & Lesueur, 1810			*																			04
	Order ANTHOATHECATA Cornelius, 1992																						
		1																	1				
	Family PORPITIDAE Goldfuss, 1818																						

Table 2. Distribution of intertidal	fauna along	Maharashtra	and Goa
-------------------------------------	-------------	-------------	---------


		-	1																		
	Family PORPITIDAE Goldfuss, 1818						*														
23.	Velella velella (Linnaeus, 1758)		-	<u> </u>			*										$\left - \right $	 			15
	Phylum ECHINODERMATA																				
	Class ASTEROIDEA de Blainville, 1830																				
	Order PAXILLOSIDA Perrier, 1884																				
	Family ASTROPECTINIDAE Gray, 1840																				
24.	Astropecten indicus Döderlein, 1888								*												04
	Phylum MOLLUSCA																				
	Class GASTROPODA Cuvier, 1795																				
	Order NEOGASTROPODA Wenz, 1938																				
	Family OLIVIDAE Latreille, 1825																				
25.	Agaronia propatula (Conrad, 1849)									*											06
	Family BABYLONIIDAE Kuroda, Habe&Oyama, 1971																\square				
26.	Babylonia spirata (Linnaeus, 1758)				*											*					04
	Family NASSARIIDAE Iredale, 1916 (1835)																				-
27.	Nassarius stolatus (Gmelin, 1791)								*												15
271	Family CLAVATULIDAE Gray, 1853	1																 			10
28.	<i>Turricula javana</i> (Linnaeus, 1767)																			*	04
20.	Order CAENOGASTROPODA	-																 			01
	Family POTAMIDIDAE H. Adams & A. Adams, 1854																			*	04
20																					04
29.	Cerithidea obtusa (Lamarck, 1822)	-															\vdash				
20	Family PLANAXIDAE Gray, 1850															*					
30.	Planaxis sulcatus (Born, 1778)	_														*	\vdash				01
	Family TURRITELLIDAE Lovén, 1847																				
31.	Turritella attenuate Reeve, 1849	_				*	*					*	*			*	$\left - \right $	*		*	57
32.	Turritella duplicate (Linnaeus, 1758)	_							*							*	\square				04
	Order LITTORINIMORPHA Golikov & Starobogatov,																				
	1975																				
33.	Family NATICIDAE Guilding, 1834											*									01
	Tanea picta (Récluz, 1844)																				
34.	Notocochlis tigrina (Röding, 1798)						*														08
	Family ROSTELLARIIDAE Gabb, 1868																				
35.	Tibia curta (G. B. Sowerby II, 1842)																			*	04
	Order CYCLONERITIDA																\square				
	Family NERITIDAE Rafinesque, 1815																				
36.	Nerita undata Linnaeus, 1758											*									05
	Order LEPETELLIDA Moskalev, 1971																				
	Family FISSURELLIDAE J. Fleming, 1822																				01
37.	Scutus unguis (Linnaeus, 1758)																			*	
57.	Order SIPHONARIIDA	-																 			
	Family SIPHONARIIDAE Gray, 1827																				
20		*								*								*	*		05
38.	Siphonaria laciniosa (Linnaeus, 1758) Order TROCHIDA	Î								^						*	\vdash	 1	^		05
	Family TROCHIDAE Rafinesque, 1815																				
39.	Umbonium vestiarium (Linnaeus, 1758)	_															\vdash				18
	Class BIVALVIA Linnaeus, 1758																				
	Order ARCIDA Stoliczka, 1871																				
	Family ARCIDAE Lamarck, 1809																				
40.	Anadara pilula (Linnaeus, 1758)									*											03
41.	Anadara secticostata (Reeve, 1844)									*											01
42.	Tegillarca rhombea (Born, 1778)																\square		\square	*	04
	Family GLYCYMERIDIDAE Dall, 1908 (1847)												ΙĪ]]		
43.	Tucetona sibogae Matsukuma, 1982				*																01
	Order MYTILIDA Férussac, 1822																				
	Family MYTILIDAE Rafinesque, 1815																				
44.	Brachidontes pharaonis (P. Fischer, 1870)															*					01
		1	1	*	*		İ						*	*		*	\square				14
45.	Perna viridis (Linnaeus, 1758)							1		1					_		$ \square$				-
45.	Perna viridis (Linnaeus, 1758) Order VENERIDA Gray, 1854	+																			
45.	Order VENERIDA Gray, 1854																				
	Order VENERIDA Gray, 1854 Family VENERIDAE Rafinesque, 1815						*				*										02
46.	Order VENERIDA Gray, 1854 Family VENERIDAE Rafinesque, 1815 <i>Callista erycina</i> (Linnaeus, 1758)						*				*			 							02
	Order VENERIDA Gray, 1854 Family VENERIDAE Rafinesque, 1815	*					*			*				 		*					02 02 07

50.	Meretrix meretrix (Linnaeus, 1758)	Т											*				*	*	21
51.	Paratapes textilis (Gmelin, 1791)	+							*										01
52.	Sunetta solanderii (Gray, 1825)	+		*															01
53.	Sunetta scripta (Linnaeus, 1758)	+			*				*		*	*				*	*		46
	Family MESODESMATIDAE Gray, 1840																		
54.	Coecella horsfieldii Gray, 1853																	*	03
55.	Crassostrea cuttackensis (Newton & Smith, 1912)																	*	06
56.	Dendostrea folium (Linnaeus, 1758)																	*	01
57.	Saccostrea cuccullata (Born, 1778)																	*	07
	Order CARDIIDA Ferussac, 1822																		
	Family DONACIDAE J. Fleming, 1828																		
58.	Donax cuneatus Linnaeus, 1758						*		*		*		*	*	*		*		25
59.	Donax scortum (Linnaeus, 1758)											*							01
	Family PSAMMOBIIDAE J. Fleming, 1828																		01
60.	Hiatula diphos (Linnaeus, 1771)																	*	
	Order OSTREIDA Férussac, 1822																		
	Family OSTREIDAE Rafinesque, 1815																		
61.	Magallana bilineata (Röding, 1798)												*						01
	Order PECTINIDA Gray, 1854																		
	Family PLACUNIDAE Rafinesque, 1815																		
62.	Placuna placenta (Linnaeus, 1758)									*									04
	Order ADAPEDONTA Cossmann & Peyrot, 1909		ĺ																
	Family SOLENIDAE Lamarck, 1809																		
63.	Solen ceylonensis Leach, 1814					*		*											07
		+																	434


01. Aare Ware; 02. Anjuna; 03. Arambol; 04. Baga; 05. Bhatye; 06. Bogmello; 07. Chivala; 08. Colva; 09. Devbaag; 10. Devgad; 11. Ganpatipule; 12. Kalbadevi; 13. Kunkeshwar; 14. Malvan; 15.


Figure 2. Shannon – Wiener (*H*') diversity indices of intertidal marine faunal communities from different stations of Maharashtra and Goa.

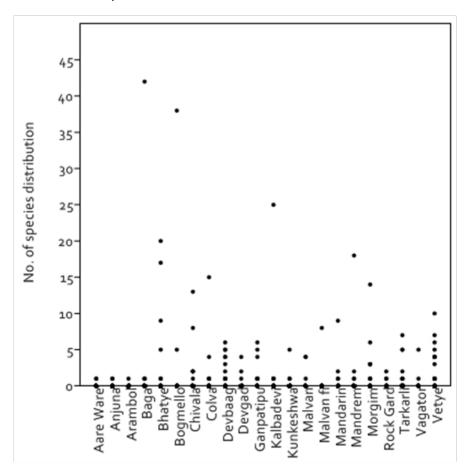

Figure 3. Simpson (*D*') richness indices of intertidal marine faunal communities from different stations of Maharashtra and Goa.

Figure 4. Pielou's evenness (*J*') indices of intertidal marine faunal communities from different stations of Maharashtra and Goa.

Figure 5. Relative proportion of species composition in the major phyla of intertidal marine faunal diversity.

Figure 6. Distribution of intertidal marine faunal species from different coastal sites along Maharashtra and Goa.

top-right corner of the plot, is also very minimal (0.01), signalling a good ordination pattern of species in twenty-one sites (Figure 6).

Discussion

Studies on the distribution and diversity of intertidal marine faunal species along the Maharashtra and Goa coasts, India, were carried out between June 2016 and December 2018. The orders concerning the number of individuals in the different habitats were as follows: Arthropoda (18%), Brachiopoda (0%), Chordata (1%), Cnidaria (10%), Echinodermata (1%), and Mollusca (70%). Phylum Porifera appeared as the second most dominant group, contributing 12 species with 15% diversity, Coelenterates comprised 10 species with 12% diversity and Arthropods contributed 10 species with 12% diversity, Echinodermata had 3 species with 4% and lastly, Annelids had 2 species with 2% diversity of the total diversity (Lakwal, et al., 2018). Shannon's diversity index, by contrast, estimated the unsampled as well as the sampled portion of the community (Magurran, 2004). The diversity was calculated, and a minimum (0.3437) value was found on Baga Beach. Vetye Beach has higher species richness (2.345) and evenness (2.018). Generally, in a healthy environment, the Margalef richness index is higher, in the range of 2.5-3.5 (Khan, et al., 2004). The species richness index ranged from 0.000 to 2.345 from different sites in the current study, indicating the rich diversity of these coasts. In the present study, a marked variation in diversity indices was observed among the sites. A study by Kolhe and Mogalekar (2017) recorded a total of 24 species of decapod crustaceans under three infra orders, seven families and 13 genera from the coastal waters of Ratnagiri in Maharashtra. In the present study, 15 species belonging to Isopoda (03 species), Decapoda (11 species) and Scalpellomorpha (01 species) are reported. Gastropods and bivalves are generally benthic organisms, and they are regularly used as bioindicators for aquatic health. This study is consistent with a similar study that was conducted at the intertidal zone of the Ratnagiri coast in Maharashtra, where 127 species of gastropods were observed and identified (Kurhe, 2014). In the present investigation, 39 species of mollusca were identified belonging to 14 orders, 23 families and 35 genera were identified and reported from different intertidal habitats along with Maharashtra and Goa. A community becomes more dissimilar as the stress increases, and therefore

species diversity decreases with decreasing water quality. Hence, communities dominated by relatively few species would indicate environmental stress (Plafkin, *et al.*, 1989).

It was also suggested that the specific seaweed association of molluscs plays a considerable role in their abundance and distribution in the intertidal zone (Newell, 1976; Purchon, 1968; John, et al., 1992; Misra and Kundu, 2005; Vaghela et al., 2010). A similar study was carried out at some of the localities in Raigad district, Maharashtra, on the west coast of India (Khade and Mane, 2012). Similar studies in Gujarat by Bhadja (2010) reported 60 species of intertidal macro-invertebrates from the rocky intertidal belt, including 35 species of molluscs, followed by coelenterates (17 species), arthropods (15 species), annelids (08 species), Porifera (06 species) and Echinodermata (06 species). Another study by Poriya and Kundu (2014) recorded a total of 82 invertebrate species from Gujrat, including four species of Porifera, 20 species of coelenterates, five species of Annelida, 11 species of Arthropoda, 40 species of Mollusca and three species of Echinodermata. In the present study, Astropecten indicus was reported from Colva Beach, and in addition, the data provided in this intertidal fauna checklist will serve as a baseline that can be used in the future to monitor natural and anthropogenic changes along the Maharashtra and Goa coasts of India. More research will aid in the discovery of new species or genera of intertidal marine fauna from various coastal environments. Therefore, the data presented in this paper can be taken as baseline data for the management of the intertidal habitat of Maharashtra and Goa in the near future. Biodiversity is one of the vital cornerstones of sustainable development and represents the biological wealth of a country. The globe is currently facing its greatest-ever biodiversity crisis. The intertidal marine fauna group's diversity in the prevalence of different habitats provides a broad opportunity for investigation to promote exploration of the possibility of eco-biological value and their conservation.

Acknowledgements

We thank the Director, Zoological Survey of India, for providing the necessary facilities. We wish to acknowledge Dr. Rajkumar Rajan, Scientist–E and Officer-in-Charge, MBRC, ZSI, Chennai. We express our sincere gratitude to Shri. C. Krishnamoorthy, Field Attender, and Shri. Tamilarasan, Field Assistant, MBRC, ZSI, Chennai, for their constant support and help during the field data collection. **References**

Aneesh, P.T. 2014. Studies on Parsitic Crustaceans Infestingon Fishes of Malabar (Ph.D. Thesis). Kannur University, Kannur, India.

- Aneesh, P.T., Kottarathil, H.A. and Kappalli, S. 2016. Branchial cymothoids infesting the marine food fishes of Malabar coast. *Journal of Parasitic Diseases*, **40**(4):1270-1277. https://doi.org/10.1007/s12639-015-0666-0
- Apte, D.A. 1988. The book of Indian Shells. Bombay Natural History Society, Oxford University Press, India, pp 115.

Barnard, J.L. 1972. Gammaridean Amphipoda of Australia. Part I. 334p. https://doi.org/10.5479/si.00810282.103

- Bhadja, P. 2010. Marine Wealth of Saurashtra Coast: Spatial and Temporal Variations in the Seawater Quality and Its Role in Intertidal Assemblage and Macrofaunal Diversity around Anthropogenically Influenced Shore. Unpublished Ph.D. Thesis, Saurashtra University, Rajkot, 1-210.
- Bierman, P., Lewis, M., Ostendof, B. and Tanner, J. 2009. A Review of methods for analyzing spatial and temporal patterns in coastal water quality. *Ecological Indicators*, doi: 10.1016/j.ecolind. 11.001.
- Crowe, T.P., Thompson, R.C., Bray, S. and Hawkins, S.J. 2000. Impacts of anthropogenic stress on rocky intertidal communities. *Journal of Aquatic Ecosystem Stress and Recovery*, 7(4):273-297. https://doi.org/10.1023/A:1009911928100

Dance, S.P. 2002. Shells. Smithsonian Handbooks.1-256pp.

- Datta, S.N., Chakraborty, S.K., Jaiswar, A.K. and Ziauddin, G. 2010. A comparative study on intertidal faunal biodiversity of selected beaches of Mumbai coast. *Journal of Environmental Biology*, **31**(6):981-986.
- Denny, M. and Wethey, D. 2001. Physical processes that generate patterns in marine communities. In M.D. Bertness, S.D. Gaines, and M.E. Hay (eds.), Marine community ecology, pp. 3-37. Sinauer Associates, Sunderland.
- Fish, J.D. and Fish, S. 2011. A student's guide to the sea shore. Cambridge University Press. 1-573.
- Gohil, B.S. and Kundu, R. 2012. Diversity of the intertidal macrofauna at west coast of Gujarat, India. Life Science Leaflets, 12:135-145.
- John, D.M., Hawkins, S.J. and Price, J.H. (ed.), 1992. Plant-Animal Interactions in the Marine Benthos. Oxford: Clarendon Press. [Systematics Association Special Volume no. 46.]
- Khade, S.N. and Mane, U.H. 2012. Diversity of Bivalve and Gastropod Molluscs from selected localities of Raigad district, Maharashtra, West coast of India. *World Journal of Science and Technology*, **2**(6):35-41.
- Khan, S.A., Murugesan, P., Lyla, P.S. and Jayanathan, S. 2004. A new indicator macroinvertibrate of pollution and utility of graphical tools and diversity indices in pollution monitoring studies. *Current Science*, **87**:1508-1510.
- Kolhe, S.S. and Mogalekar, H.S. 2017. Decapod crustacean diversity of Ratnagiri coastal waters, Maharashtra, India. *Journal of Ento*mology and Zoology Studies, 5(3):370-372.
- Kurhe, A.R. 2014. Vertical distribution and diversity of gastropods molluscs from intertidal habitats of the Ratnagiri coast Maharashtra, India. *International Research Journal of Natural and Applied Sciences*, 1(6).
- Lakwal, V.R., Kharate, D.S. and Mokashe, S.S. 2018. Intertidal Macrofaunal Invertebrates Diversity from Ratnagiri Coast, (MS) India of Arabian Sea. *International Journal for Research in Applied Science and Engineering Technology*, **6**(1):1630-1635. https://doi.org/10.22214/ijraset.2018.1252
- Magurran, A.E. 2004. Measuring biological diversity. Blackwell publishing, USA, p. 256.
- Margalef, R. 1968. Perspective in Ecological Theory. University of Chicago Press. 112pp.
- Menon, P.K.B., Datta, A.K. and Das Gupta, D. 1951. On the marine fauna of Gulf of Kutch Part II-Gastropoda. *Journal of Bombay Natural History Society*, **8**(2):475-494.
- Misra, S. and Kundu, R. 2005. Seasonal variations in population dynamics of key intertidal mollusks at two contrasting locations. *Aquatic Ecology*, **39**:315-324. https://doi.org/10.1007/s10452-005-1779-9
- Myers, A.A. 1985. Shallow-water, coral reef and mangrove Amphipoda (Gammaridea) of Fiji. *Records of the Australian Museum*, Supplement. 1-143. https://doi.org/10.3853/j.0812-7387.5.1985.99
- Newell, R.C. 1976. Adaptations to intertidal life In: Adaptation to environment (Ed. Newell D.R.C.), Butterworths, London. pp. 1-82. https://doi.org/10.1016/B978-0-408-70778-7.50004-4
- Nybakken, J.W. 1993. Marine Biology: An ecological approach. Harper Collins College Publishers, New York, pp.462.
- Pavithran, V.A. and Nandan, S.B. 2014. Distribution and Diversity of Intertidal Macrofauna of Dharmadam Beach, South West Coast of India. *International Journal of Marine Science*, 4(23). doi: 10.5376/ijms.2014.04.0023. https://doi.org/10.5376/ijms.2014.04.0023

Pielou, E.C. 1966. Ecological diversity. New York: Wiley Eastern Publications.

Pillai, N.K. 1985. The Fauna of India: Copepod Parasites of Marine Fishes. Zoological Survey of India, India. 900.

- Plafkin, J.L., Barbour, M.T., Poter, K.D., Gross, S.K. and Highes, R.M. 1989. Rapid bioassessment Protocol for use in streams and rivers. Benthic macroinvertebrates and fish. EPA/ 444/4- 89/ 011. Office of water regulation and standards, US Environment Protection Agency, Washington DC, USA.
- Poriya, P. and Kundu, R. 2014. Species invasion and succession as community and ecosystem responses towards climate change in the rocky intertidal ecosystems of Kathiawar Peninsula. *Journal of Aquatic Biology and Fisheries*, **2**:426-430.
- Purchon, R.D. 1968. The biology of the Mollusca. Pergamon press, London. p. 560.
- Sakthivel, K. and Antony Fernando, S. 2014. Echinoderm diversity in Mudasalodai and Nagapattinam coast of South East India. *International Journal of Biodiversity and Conservations*, 6(1):1-7. https://doi.org/10.5897/IJBC2013.0619
- Shannon, C.E. and Wiener's, W. 1949. The mathematical theory of communication. Urbana, IL: University of Illinois Press.
- Shukla, J. and Misra, B.M. 1977. Relationship between Sea Surface Temperature and Wind Speed over the Central Arabian Sea and Monsoon Rainfall over India. *Monthly Weather Review*, **105**:998-1002. https://doi.org/10.1175/1520-0493(1977)105<0998:RBSS-TA>2.0.CO;2
- Simpson, E.H. 1949. Measurement of diversity. Nature, 163:688. https://doi.org/10.1038/163688a0
- Subba Rao, N.V. 1991. Mollusca in Animal Resources of India (Zoological Survey of India, Calcutta), 125-147.
- Trilles, J.P. 1979. Les Cymothoidae (Isopoda, Flabellifera; parasites despoissons) du Rijksmuseum van Natuurlijke Historieede Leiden. II. Afrique, Ameriqueet regions Indo-Ouest-Pacifique. *Zoologische Mededelingen*, **54**:245-275.
- Vaghela, A., Bhadja, P., Ramoliya, J., Patel, N. and Kundu, R. 2010. Seasonal variations in the water quality, diversity and population ecology of intertidal macrofauna at an industrially influenced coast. *Water Science and Technology*, 61(6):1505-1514. https://doi. org/10.2166/wst.2010.503